Warning: ob_start(): non-static method wpGoogleAnalytics::get_links() should not be called statically in /home/fivewood/fivewood.co.uk/green-energy/wp-content/plugins/wp-google-analytics/wp-google-analytics.php on line 259
Solar Energy | Green and Alternative Energy Information

UrbanTile Window Blind Concept

Each and every day, the sun showers our cities in solar energy. Every night, our cities emit light so bright that they can be seen from space. An industrial designer from the Bezalel Academy of Art and Design, Jerusalem, Israel, has designed a concept device called the UrbanTile that would harness the solar energy city buildings absorb during the day for their lighting needs at night. The UrbanTile is a small solar panel that can be flipped to reveal a light emitting screen. Banded together into rows, the panels become a window blind that forms a light and entertainment display.

The panels would made from aluminum and stainless steel with an OLED screen on one side and a photovoltaic panel on the other. Incorporating electrical motors to move them, they could be programmed to turn automatically at different times of the day. Designed to be mounted into windows, the panels could be turned to rest at various angles allowing light in during the day whilst absorbing solar energy. In the evening, the OLED screens would be turned to face indoors to light up rooms and also provide a bank of screens for media playback. At night…

View the Original article

Solar Powered Garden lights

Gardens are a very important part of someone’s home. Gardens not only decorate the home but also give fresh feeling to the home. For a creative person the garden could be the place to shower all the creativity. Lighting also brings out the best part of a garden.

Without proper lighting a garden does not really feel good. There are many types of lightings available in the market but the newest addition to the variety of lightings is solar powered garden lights. These solar powered garden lights not only give a fresh feeling to the garden but also help in saving the environment.

View the Original article

Why isn’t the world using more solar energy?

Using more solar energy to cut our dependence on fossil fuels, and improve our energy security and energy independence seems like a very logical solution, especially since the Sun is the most abundant source of energy on our planet. Solar energy can provide us with over 1000 times more energy than we currently need but despite this enormous potential, in 2008 solar power accounted for miserable 0.02% of the world’s total energy supply.

There are several reasons why world isn’t using more solar energy to satisfy its huge energy demand. When talking about solar power technologies we need to know that these technologies are still in the very early phase of development, which explains why solar power still fails to achieve efficiency comparable with fossil fuels. An average solar panel has an efficiency of around 15 percent, which means that large amount of solar energy gets wasted, and ends up like a heat instead being turned into some form of useful energy.

Improving efficiency of solar cells won’t mean much unless science also finds the solution on how to make solar panels cheaper. The only way solar power can really prosper in years to come is by finding highly efficient solar panels that would also be commercially viable. This is by all means a difficult task for science, but several latest researches have given us at least some hope that finding this solution isn’t a mission impossible.

There is also one other issue that solar energy sector will need to resolve, namely the intermittency issue. Solar energy is an intermittent energy source because Sun doesn’t shine all the time which means that solar energy is not continually available throughout the whole day. In order to tackle the intermittency issue solar energy (again) needs science to find some cheap solar energy storage solution. Using molten salts as the storage medium has so far proved to be quite effective, and many energy experts have great expectation of this solar energy storage method.

Solar power will also need to have strong political support, and big funding to become dominant energy source in years to come. Powerful fossil fuel lobbies will no doubt use their huge political influence to slow down the development of solar power technologies as much as possible because they are well aware that once science presents cheap and efficient solar panels, they will lose their last big advantage over solar power, the cost-competitiveness.

The future of solar power depends heavily on science but politics cannot be overlooked because science needs large funds to continue with researches, and these funds can not be obtained without the strong political support. Solar power has currently strong public support which should result in favorable politics toward further development of solar power technologies in years to come. Doing otherwise would mean fewer votes on elections, and this is something politicians will try to avoid at almost any cost.

The correlation of science, adequate funding and strong political support should in years to come turn solar energy into one of the world’s most widely used energy sources.

Posted byNed Haluzan

View the Original article

Solar Wind Power: Generating Power In The Future

As the world discovers new ways to meet its growing energy needs, energy generated from Sun, which is better known as solar power and energy generated from wind called the wind power are being considered as a means of generating power. Though these two sources of energy have attracted the scientists for a very long time, they are not able to decide, which of the two is a better source to generate power. Now scientists are looking at a third option as well. Scientists at Washington State University have now combined solar power and wind power to produce enormous energy called the solar wind power, which will satisfy all energy requirements of human kind.

Advantages of Solar wind power.

The scientists say that whereas the entire energy generated from solar wind will not be able to reach the planet for consumption as a lot of energy generated by the satellite has to be pumped back to copper wire to create the electron-harvesting magnetic field, yet the amount that reaches earth is more than sufficient to fulfill the needs of entire human, irrespective of the environment condition.Moreover, the team of scientists at Washington State University hopes that it can generate 1 billion billion gigawatts of power by using a massive 8,400-kilometer-wide solar sail to harvest the power in solar wind.According to the team at Washington State University, 1000 homes can be lit by generating enough power for them with the help of 300 meters (984 feet) of copper wire, which is attached to a two-meter-wide (6.6-foot-wide) receiver and a 10-meter (32.8-foot) sail.One billion gigawatts of power could also be generated by a satellite having 1,000-meter (3,280-foot) cable with a sail 8,400 kilometers (5,220 miles) across, which are placed at roughly the same orbit.The scientists feel that if some of the practical issued are solved, Solar wind power will generate the amount of power that no one including the scientists working to find new means of generating power ever expected.

How does the Solar wind power technology work?
The satellite launched to tap solar wind power, instead of working like a wind mill, where a blade attached to the turbine is physically rotated to generate electricity, would use charged copper wire for capturing electrons zooming away from the sun at several hundred kilometers per second.

Disadvantages of Solar wind power
But despite the fact that Solar wind power will solve almost all the problems that we were to face in future due to power generating resources getting exhausted, it has some disadvantages as well. These may include:

Brooks Harrop, the co-author of the journal paper says that while scientists are keen to tap solar wind to generate power, they also need to keep provisions for engineering difficulties and these engineering difficulties will have to be solved before satellites to tap solar wind power are deployed.The distance between the satellite and earth will be so huge that as the laser beam travels millions of miles, it makes even the tightest laser beam spread out and lose most of the energy. To solve this problem, a more focused laser is needed.But even if these laser beams reach our satellites, it is very doubtful that our satellites in their present form will be able to tap them. As Greg Howes, a scientist at the University of Iowa puts it, “The energy is there but to tap that energy from solar wind, we require big satellites. There may be practical constraints in this.”

View the Original article

Efficient, inexpensive plastic solar cells coming soon

ScienceDaily (Oct. 11, 2010)  Physicists at Rutgers University have discovered new properties in a material that could result in efficient and inexpensive plastic solar cells for pollution-free electricity production.

The discovery, posted online and slated for publication in an upcoming issue of the journal Nature Materials, reveals that energy-carrying particles generated by packets of light can travel on the order of a thousand times farther in organic (carbon-based) semiconductors than scientists previously observed. This boosts scientists’ hopes that solar cells based on this budding technology may one day overtake silicon solar cells in cost and performance, thereby increasing the practicality of solar-generated electricity as an alternate energy source to fossil fuels.


Mimicking nature, water-based ‘artificial leaf’ produces electricity

A team led by a North Carolina State University researcher has shown that water-gel-based solar devices — “artificial leaves” — can act like solar cells to produce electricity. The findings prove the concept for making solar cells that more closely mimic nature. They also have the potential to be less expensive and more environmentally friendly than the current standard-bearer: silicon-based solar cells.

The bendable devices are composed of water-based gel infused with light-sensitive molecules — the researchers used plant chlorophyll in one of the experiments — coupled with electrodes coated by carbon materials, such as carbon nanotubes or graphite. The light-sensitive molecules get “excited” by the sun’s rays to produce electricity, similar to plant molecules that get excited to synthesize sugars in order to grow, says NC State’s Dr. Orlin Velev, Invista Professor of Chemical and Biomolecular Engineering and the lead author of a paper published online in the Journal of Materials Chemistry describing this new generation of solar cells.


Abandoned Sites to Become Solar Fields

Brownfields like this may become solar fields. Via Srwenvironmental.com

Brownfield sites are abandoned or underused industrial and commercial facilities available for re-use. Often, redeveloping such sites is hampered by real or perceived environmental contamination.

But a new partnership may change that. OPEL Solar, a supplier of high concentration photovoltaic (HCPV) solar panels and advanced solar trackers and TRUENORTH Solar & Environmental, a designer and installer of high quality solar industry products, have teamed up to install utility-scale solar fields on brownfield sites across North America that have been deemed otherwise unusable.

One of the attractions of doing that is that blighted areas of land can be turned into renewable energy fields to meet growing demand, besides helping utilities to meet their clean energy mandates.

View the Original article

Solar energy vs fossil fuels

Many people wonder how come we still so heavily rely on fossil fuels when we could use free, environmentally friendly, and almost unlimited solar energy to satisfy our energy needs. The answer is quite simple, fossil fuels are still considerably cheaper energy option compared to solar energy, and energy consumers are still not ready to pay higher prices, even if this means reduced environmental damage. Also, fossil fuels technologies have far better efficiency compared to currently available solar power technologies.

Solar energy industry still searches for its holy grail in form of cheap and efficient solar panels. There are many ongoing researches that offer some interesting solutions, but none of these solutions have the sufficient commercial component that would make it economically viable, and thus competitive with fossil fuels.

Standard solar panels installed on a house may convert only up to 15% of the sun’s rays, meaning that large potion of solar energy remains untapped and instead becomes waste heat. Even the most efficient solar panels available on the market today have efficiency of only 22%.

Scientists use different approaches in their research of efficient and inexpensive solar photovoltaic panels. Some believe the key may lie in complex nanomaterials and semiconductors, while others focus on the process itself, not giving total attention to materials used in process.

How difficult it is to improve efficiency of solar panels with currently available technologies? Many energy experts will tell you that improving efficiency of solar panels by only 5% would be a massive achievement, and this certainly answers the above question.

Photovoltaics are complicated technology, and in many cases when scientists try to improve efficiency their end result it even worse then it was in the beginning. The discovery of cheap and efficient solar panels is definitely one of the greatest scientific and technological challenges of our time.

Though fossil fuels currently have big advantages in terms of costs and efficiency compared to solar panels, fossil fuel industry still wakes up each day in fear thinking “what if today is the day when solar panels will become less expensive and much more efficient?”.

That day will no doubt come, and hopefully more sooner than later.

Posted byNed Haluzan

View the Original article

Worst Excuses for Not Using Solar Power

Over the past couple of months as the team at Clean Energy Experts has talked to a number of friends and other colleagues about solar power, we’ve been hearing a lot of the same excuses for not going solar.  Time and time again, we have to explain to them why their reasoning is unfounded but still we find the same excuses wherever we go.  So we thought we’d take a little time to dispel the four most common excuses for not utilizing solar power.

First Excuse: It’s Too Expensive

Everyone seems to know that federal and state governments have significant financial incentives in place to help promote the adoption of solar power.   Even after these incentives, the average residential solar system costs between $10,000 and $30,000 and for most people, this represents a major capital investment.  As a result, most people stop there and say, “I can’t afford it.”

What they don’t know is that there are a number of financing options available to help ease the cost of solar.  For example, a number of solar installers offer financing programs, similar to small loan or mortgage, where there is little to no up front cost and finance the balance of the purchase price through a loan.  As a result, the homeowner does not have to come up with cash upfront but can amortize the cost of the solar system over time.  What’s great is that when you factor in a your reduced utility bill from solar and the amortization cost of the panels, this amount is most likely still less than your electric bill without solar power.  So you save immediately and that savings grows over time as electricity rates increase.


Self-healing solar cells


One of the big stories this week about renewable energy came from MIT, where scientists have succeeded in replicating a natural process to increase the durability of solar cells.

Why is that important? Well, the sun’s rays can be highly destructive to many materials. And sunlight leads to a gradual degradation of many of the systems developed to harness it. So the MIT brains had an idea: to imitate the process whereby plants cope with the impact of sunlight.

Plants are always breaking down their light-capturing molecules and reassemble them from scratch, so the basic structures that capture the sun’s energy are, in effect, always brand new. This action all takes place inside tiny capsules called chloroplasts that reside inside every plant cell where photosynthesis happens.

The research was led by Michael Strano, a Charles and Hilda Roddey Associate Professor of Chemical Engineering, and his team of graduate students and researchers. They have created a new set of self-assembling molecules that can turn sunlight into electricity; the molecules can be repeatedly broken down and then reassembled quickly, just by adding or removing an additional solution.

View the Original article